Origem: Wikipédia, a enciclopédia livre.

Nos sólidos que possuem elétrons livres, como os metais, é possível que a carga elétrica seja transportada através deles, por isso dizemos que são condutores de eletricidade.[2] Nesses materias, o movimento de cargas elétricas é composto por cargas negativas.[3] Materiais como o cobre, o alumínio e a prata são bons condutores.
Sais, quando dissolvidos ou fundidos, subdividem-se em partículas eletricamente carregadas que, agora livres, também permitem o movimento de cargas em seu interior.[4]
Isolantes não permitem o movimento de cargas elétricas em seu interior. Entretanto, se a tensão elétrica aplicada em suas extremidades for superior a sua rigidez dielétrica, tornar-se-á um condutor.[5]
Trabalhos realizados sobre uma nova classe de condutores, feitos a partir de polímeros, foi o motivo que concedeu o Nobel de Química de 2000 aos seus premiados.[6][7]
Propriedades
Resistência


Onde



Ôhmicos e não-ôhmicos


Resistividade

ρ = R*A/l
E sua unidade de medida é o ohm-metro (Ω-m).
Condutividade

σ = 1/ρ
Sua unidade de medida é o [(Ω-m)^-1].
Condutores: apresentam condutividade alta, em torno de 10^7 [(Ω-m)^-1].
Abaixo há uma tabela com os valores de condutividade elétrica para alguns metais e ligas:


Estrutura de banda de energia (sólidos)
A condutividade elétrica está ligada fortemente ao número de elétrons disponíveis para a condução e estes buscam preencher os estados de energia mais baixos (estabilidade) a não ser que sejam submetidos à ação de forças externas (campo elétrico, por exemplo). A banda de energia eletrônica (ou banda de valência) é formada por estados atômicos que se dividem em subestados, ou estados eletrônicos. Quanto mais externas as camadas eletrônicas mais estas contribuem para a formação da banda eletrônica que é formada pelos elétrons da camada de valência do átomo. A banda vazia (ou banda de condução), como seu nome diz, é onde ocorre a condução elétrica propriamente dita, o movimento ordenado de elétrons por meio de uma diferença de potencial (d.d.p.).Quanto mais distantes as bandas, menor a condutividade elétrica.[11] Existem apenas quatro tipos de estruturas de bandas a 0K (zero absoluto), e estão mostradas na figura abaixo:

Características
Nos metais há imperfeições na estrutura cristalina que os levam a alterar sua resistividade, e por consequência sua condução. Segue abaixo a representação equacional dos responsáveis pela resistividade dos metais:ρtotal = ρt + ρi + ρd (regra de Matthiessen)
em que ρt, ρi e ρd, são, respectivamente, as contribuições das resistividades térmicas(vibrações), devido á impurezas, e da deformação (plástica).[12]
Para os condutores, o aumento da temperatura resulta diretamente num aumento de resistividade, por conta de haver mais choques entre elétrons o que dificulta seu movimento ordenado. Tal aumento é linear e demonstrado pela fórmula:
ρt = ρo + αT
sendo ρo e α, constantes para cada material específico.
Nenhum comentário:
Postar um comentário